Sensitivity to deformation of an FBG sensor

The Fiber Bragg Grating sensor (FBG) allows to measure the deformation because it produces a wavelength response proportional to the variation of its grating pitch Λ induced by the deformation itself.

The wavelength λ_{B} reflected by a Bragg grating is in fact expressed by the relation

$$\lambda_{\rm B} = 2 n_{\rm eff} \, \Lambda$$

where $n_{\mbox{\scriptsize eff}}$ is the effective refraction index of the grating.

A variation L of the grating length induces then a variation of Λ and then of $\lambda.$

The deformation ε can therefore be calculated as:

$$\epsilon = \frac{\Delta L}{L} = \frac{\Delta \Lambda}{\Lambda} = \frac{\Delta \lambda_B}{(1 - p_e)\lambda_B}$$

where p_{e} is a coefficient accounting the elasto-optic effects on the refraction index of the sensor and is

It follows that the deformation causing a variation of 1 pm in the wavelength reflected by a sensor with, for example, λ_B = 1530.5 nm, is 0,837 $\mu\epsilon$.

The measurement sensitivity in wavelength, expressed in pm/ $\mu\epsilon$ is then about

$$s_{\lambda} = 1,19 \text{ pm}/\mu\epsilon$$

Thermal sensitivity of an FBG sensor

Due to the effect of temperature, the Bragg lambda λ_B undergoes a change $\Delta\lambda_B$ as a function of temperature change ΔT , expressed by the relationship

$$\Delta \lambda_{\rm B} = 2\Lambda (\alpha n_{\rm eff} + \eta) \Delta T$$

where α and η represent the coefficient of thermal expansion and the thermo-optic coefficient of the grating material, respectively:

$$\alpha = \frac{1}{\Lambda} \frac{\Delta \Lambda}{\Delta T}$$

$$\eta = \frac{\delta n_{eff}}{\delta T}$$

The temperature change (Δ T) results in a change in the refractive index of the core and cladding by an amount determined by the value of η (whose typical value is 8.3e-6 °C⁻¹), which ultimately causes the Bragg wavelength shift. Fiber expansion can also contribute to the Bragg wavelength shift. However, the latter effect can generally be ignored because αn_{eff} (typically 0.55e-6*1.4725 = 0.809e-6 °C⁻¹) is an order of magnitude less than η .